Bonneville Power Administration Fish and Wildlife Program FY98 Watershed Proposal Form #### Section 1. General administrative information # Title Reduce Sediment Delivery From Kline Mountain Road To The S.F. Salmon River. | Bonneville project number, if an ongoing project 8071 | | | | | |---|--|--|--|--| | Business name of agency | , institution or organization requesting funding | | | | | USDA Forest Service, Bo | ise National Forest, Cascade Ranger District | | | | | Business acronym (if appropriate) USFS, BNF, Cascade RD Proposal contact person or principal investigator: | | | | | | Name | Jennie Fischer | | | | | Mailing Address | PO Box 696 | | | | | City, ST Zip | Cascade, ID 83611 | | | | | Phone | 208-382-7452 | | | | | Fax | 208-382-7480 | | | | | Email address | none | | | | #### Subcontractors. | Organization | Mailing Address | City, ST Zip | Contact Name | |--------------|------------------|-------------------|---------------------| | USFS | P.O.Box 696 | Cascade, ID 83611 | Jennie Fischer | | Contractors | to be determined | | | | | | | | | | | | | #### NPPC Program Measure Number(s) which this project addresses. 7.6B Habitat Objectives-Water Quality; 7.7 Implement Federal Habitat Improvement #### NMFS Biological Opinion Number(s) which this project addresses. Title: Informal consultation on...Kline Mountain Road Rehailitation Project..., Boise NF, July2, 1995. Title: USFS, Boise NF, Ongoing Actions, Biological Opinion, April 14, 1995. #### Other planning document references. - * South Fork Salmon River Restoration Strategy (1989): Road Improvements, pg 13,#27; - * Boise NF, Land and Resource Management Plan (1990): Activity Schedule page A-51; - * SFSR Total Maximum Daily Load (1992): Problem Assessment, TMDL Provisions, #6; - * Upper SFSR and Johnson Creek Watershed Anaysis (1995):Recommendations, p. VII-46 - * Kline Mountian Road Stabilization Project, Evironmental Assessment (1996) An Ad-Hoc Committee was formed during the NEPA process for the Environmental Assessment that included: US Fish and Wildlife Service, Idaho Department of Fish & Game, IDHW-Division of Environmental Quality, Nez Perce Tribes, Shoshone-Bannock Tribes, Local summer home owners, Warm Lake Water Users Association, Treasure Valley Trail Machine Association and a general public representative. #### Subbasin. South Fork of the Salmon River (SFSR) 17060208 #### Short description. Reduce sediment along, #474 Road, by utilizing the most cost effecive methods, while keeping the road open to the public. Obilterate the bypass road and restore the wetland. Stabilize and perform minor reconstruction improvements along the #427 Road. . ### Section 2. Key words | Mark | Programmatic
Categories | Mark | Activities | Mark | Project Types | |------|----------------------------|------|------------------|------|-----------------------| | * | Anadromous fish | * | Construction | X | Watershed | | | Resident fish | | O & M | | Biodiversity/genetics | | | Wildlife | | Production | | Population dynamics | | | Oceans/estuaries | | Research | | Ecosystems | | | Climate | | Monitoring/eval. | | Flow/survival | | | Other | * | Resource mgmt | | Fish disease | | | - | | Planning/admin. | | Supplementation | | | | | Enforcement | | Wildlife habitat en- | | | | | Acquisitions | | hancement/restoration | Sediment reduction, SFSR TMDL, 303(d) # Section 3. Relationships to other Bonneville projects | Project # | Project title/description | Nature of relationship | |-----------|---------------------------|------------------------| | | n/a | | | | | | # Section 4. Objectives, tasks and schedules # Objectives and tasks | Obj | | Task | | |-------|-----------------------------------|-------|--| | 1,2,3 | Objective | a,b,c | Task | | 1 | Reduce sediment delivery from | a | Stabilize surface, cut, fill slopes of | | | #474 road | | road. Two major reconstruction | | | | | locations. | | 2 | Limit access to old bypass | a | Sign road closure and block | | 2 | Finalize obliteratation of bypass | b | Revegetate road surface, shape | | | road #490 and restore wetland | | cuts. Establish native vegetation in | | | vegetation | | wetland. | | 3 | Stabilize #427 road | a | Minor reconstruction | | | | | improvements along road. | | | | | | | | | | | # Objective schedules and costs | | Start Date | End Date | | |-------------|------------|----------|---------------| | Objective # | mm/yyyy | mm/yyyy | Cost % | | 1 | 5/1998 | 10/1998 | 80.00% | | 2 | 6/1998 | 8/1998 | 0.50% | | 3 | 5/1998 | 10/1998 | 19.50% | | | | | 0.00% | | | | | TOTAL 100.00% | #### **Schedule constraints.** Contract preparation and awarding process by the USFS is the largest constraint. # **Completion date.** 1999 # Section 5. Budget ### FY99 budget by line item | Item | Note | FY98 | |------|------|------| | | | | | Personnel | Contract prep & administration, planting | \$33,545 | |---------------------------|--|-----------| | Fringe benefits | | \$ 0 | | Supplies, materials, non- | Native vegetation, road closure signs | \$ 955 | | expendable property | | | | Operations & maintenance | | \$ 0 | | Capital acquisitions or | | \$ 0 | | improvements (e.g. land, | | | | buildings, major equip.) | | | | PIT tags | # of tags: | \$ 0 | | Travel | | \$ 0 | | Indirect costs | | \$ 0 | | Subcontracts | Road reconstruction & stabilization | \$272,542 | | | contracts | | | Other | IDF&G volunteers for wetland | \$ 0 | | | transplanting | | | TOTAL | | \$307,042 | #### Outyear costs | Outyear costs | FY99 | FY00 | FY01 | FY02 | |-------------------|------|------|------|------| | Total budget | | | | | | O&M as % of total | | | | | #### Section 6. Abstract - a. Funding needed to complete project is \$307,042 dollars. The ability of the USFS to implement this project has been limited by available funding. USFS has funded, completed portions of the project with watershed improvement dollars. The remaining work cannot be funded with watershed dollars. - b. The Kline Mountain road is identified in numerous environmental documents as a sediment source into the South Fork Salmon River (SFSR). The purpose of this project is to reduce current surface erosion from roads and prevent sediment delivery to the SFSR. Currently, 426 tons/year of sediment is eroding and being stored within the project area. Approximately, 0.6 ton/year is actually being delivered to the SFSR. - c. The benefit of this project is improvement of critical spawning habitat for federally listed species, Chinook salmon. Though stabilization of these roads and restoration of wetlands, water quality will be improved. - d. Road stabilization work would be accomplished using road treatment methods to reduce erosion and stabilize the road systems. Accepted and effective practices to stabilize cut/fill slopes and road surfaces include: Hillfaker structures and bioengineering techniques. Application of gravel on road surfaces is documented as 92% effective in reducing erosion. Complete obliteration of the #490 road would restore a natural wetland, reduce erosion and runoff. Reconstruction of the #427 road would improve road stability and safety. e. & f. The project would be implemented the summer/fall 1998. Stabilizing Kline Mountain (#474), Stolle Meadows (#427), and obliteration of the (#490) roads, including wetland restoration would reduce stored and total sediment by 16 and 24 percent respectively. A monitoring plan is developed to evaluate: project implementation, sediment reduction treatments, and vegetation success. # Section 7. Project description #### a. Technical and/or scientific background. The Kline Mountain project is located within the South Fork of the Salmon River (SFSR) drainage on the Boise National Forest, 30 miles east of Cascade, Idaho. The Kline Mountain (#474), Stolle Meadows (#427) and the bypass (#490) roads, are all part of the Warm Lake area road system. The project is located north of Stolle Meadows and south of the Warm Lake Highway. This area of the SFSR has inherent conditions produce approximately 65,000 tons of natural sediment each year (Seyedbagheri et al 1987). Studies have shown that forest road have contributed up to 85% of the management induced sediment entering the SFSR (Gonsior and Garner 1971; King 1979; Megahan et al 1992). Sediment is mostly transported during high intensity rainstorms as water flows over the unstable cut and fill slopes, drainage ditches, and road surface. In addition, disturbed soil along the road accelerate natural erosion and sediment delivery rates. Intense storm events have triggered surface and mass erosion along the #474 Road. Debris flows have deposited large amounts of sediment into the SFSR. Management induced disturbances along the Kline Mountain Road have acted as a catalyst in increasing the amount and size of debris flows. Currently there are three know point sources of sediment along the fill slope where sediment is transported directly to the SFSR. Chinook spawning occurs in the SFSR from Stolle Meadows to the confluence with the East Fork of the South Fork Salmon River. The Kline Mountain project is located within this reach of river. Chinook spawning occurs in the project area in two locations: 1) Above and below the SFSR Campground, with some in Curtis Creek at the mouth; 2) At the 'Plunge' (near the bypass road #490) and extending upstream beyond the Bear Creek confluence in sporadic riffles. Spawning is not common in the remaining project area, because of slightly steeper stream gradients, higher streamflow velocities, and inadequate spawning substrates. In 1993, over 30 redds were observed within the project area (Sankovich 1993). The 3.1 mile reach, which includes the project area, is predominately riffles with only 5% pools. The riffle/pool ratio for this reach is about 19:1, with a desired ratio generally at 1:1. Average riffle depth was 1 foot, while pools averaged 2 feet. Pools with depths greater than 3 feet are highly suitable for fish resting and cover, as with pools with large woody debris (log or debirs jams). The majority of pools are found in river bends a with associated woody debris. A visual estimate of surface fines in the stream channel was made at 33%. The lower percent of fines, the more space available for fish and aquatic insects to use. This also allows for greater spawning survival and rearing cover for juveniles. This project was identified as location to reduce the management induced sediment yield to the SFSR. Treatment of the road while maintaining access to Stolle meadows was a requirement of the USFS decision (USDA-FS 1996). A detailed site investigation quantified the amount of sediment being delivered to the SFSR and helped to develop the project design to reduce sediment delivery from those sites. The use of native vegetation and structures will help to insure the success of the stabilization effort along roads and through the wetland. Through the informal consultation process, NMFS determined that the action (project) would have no more than negligible potential to adversely affect listed Snake River salmon. NFMS concurred with the BNF determination that the action is not likely to adversely affect listed Snake River spring/summer Chinook salmon, Snake River fall Chinook salmon, or their critical habitat (NMFS 1995). #### b. Proposal objectives. The following section describes the project by objective with a list of details. The application of best management practices will be used to control erosion at the construction sites (pre, during and post) during project implementation. #### Objective 1.0 - Kline Mountain Road Stabilization (#474). Treatment of this road segment will reduce sediment along the Kline Mountain road, by utilizing the most cost effective methods, while keeping the road open to the public. The fill slopes along the #474 road would be stabilized with a combination of planted vegetation and applying Hillfaker material. Retaining walls, crib walls, or rock gabions would be installed to stabilize the toe of the reshaped slopes. All exposed 'cut and fill' slopes would be heavily planted with shrub and tree saplings then hydromulched with a native seed mixture. Existing overhangs "eyebrows" at the head of severe cutslopes would be sloped backed with the extra material scattered below on the cutslopes. | Item | Quantity/Unit | |----------------------------|---------------| | Miles of road | 2.0 miles | | Reconditioning | 2.0 miles | | Culverts removed | 1 | | Culverts installed 18" CMP | 306 LF | | Ditchline excavation | 75 LF | | Removal of berms | 5800 LF | | Aggregate sufacing | 2900 CY | | Aggregate base | 500 CY | | Hand placed riprap | 80 LF | | Lag walls 3' high | 1000 LF | | Hillfaker Walls | 500 sq ft | | Grid structures | 2 | | Eyebrow removal | 2000 LF | | Seeding & Mulching | 5.0 acres | | Planting | 3500 plants | | | | The surface of the #474 road would be graveled for approximately two miles, starting at the Warm Lake highway then south to its junction with the #490 road. The road would be insloped with ditches and culverts providing road surface drainage. All worn out culverts would be replaced, plugged, or lined, and additional culverts would be installed. #### Objective 2.0 - Obliteration of bypass road (#490). This segment of road was obliterated in the fall of 1996. The site was seeded with native grasses and the wetland was vegetated with transplanted wetland species. The remaining work includes the establishment of native vegetation (trees/shrubs) on the old road surface, cutslope 'eyebrow' removal, and signing to prevent access into wetland. Additional wetland transplanting will be accomplished with volunteers from the Idaho Department of Fish and Game in the spring of 1998. | Item | Quantity/Unit | |-----------------|---------------| | Miles of road | 0.67 mile | | Eyebrow removal | 400 LF | | Planting | 200 plants | | Signing | 2 signs | #### Objective 3.0: Stolle Meadows Road (#427). Stabilization and road safety improvements would be completed along the #427 road. Road stabilization includes graveling the first ½ mile of road starting at the Warm Lake highway and installation of additional culverts. Road safety would be improved by installing four additional pullouts, plus widening two narrow road corners above the junction with Bear Creek Road #470. | Item | Quantity/Unit | | |----------------------------|---------------|--| | Miles of road | 3.26 mile | | | Reconditioning | 1.0 miles | | | Roadway ripping | 0.25 miles | | | Culverts installed 18" CMP | 320 LF | | | Culverts installed 24" CMP | 80 LF | | | Ditchline excavation | 100 LF | | | Removal of berms | 400 LF | | | Aggregate sufacing | 1000 CY | | | Aggregate for ditches | 100 CY | | | Hand placed riprap | 40 CY | | | Eyebrow removal | 50 LF | | | Seeding & Mulching | 2.0 acres | | | Planting | 500 plants | | | Signing | 6 signs | | #### c. Rationale and significance to Regional Programs. The Kline Mountain Project is located within the South Fork of the Salmon River which is managed by the Boise National Forest to specifically to maintain or improve anadromous fish habitat, and improve the SFSR to meet State water quality standards (USDA-FS 1990). This area is critical spawning habitat for Chinook salmon. This project is consistent with the Fish and Wildlife Program (FWP 1994) habitat objectives (Section 7, 7.6D) to improve water quality to fully comply with the existing federal and state standards, and meet biological requirements of the Chinook salmon, a federally listed species. The SFSR is currently listed as Water Quality Limited Waterbody (303d) by the State of Idaho and has an approved Total Maximum Daily Load (TMDL), for the parameter of sediment (USDI-EPA 1992). The Kline Mountain Stabilization Project was identified in the approved TMDL, and will help move toward the reduction of sediment delivered to the SFSR from roads. This projects initiates actions to improve water quality as directed in the FWP (1994) to implement federal habitat improvements (Section 7.8A.2). The use of best management practices to control erosion at the project location and during project implementation is a requirement of the Environmental Assessment (USDA-FS 1996) and the FWP (1994) Section 7.8B. The use of these practices will also be monitored. #### d. Project history This project is a **new** project that is submitted as a "watershed" project. #### e. Methods. A full description of this project proposal can be found in the Kline Mountain Road Stabilization Environmental Assessment, at the Cascade Ranger District (USDA-FS 1996). The methods of the project follow standard road reconstruction, vegetation establishment, wetland restoration techniques. Each of the objectives was summarized above, **Section b. Proposal objectives**, with a list of project details that would be accomplished. #### f. Facilities and equipment. No facilities or equipment are requested for this project proposal. #### g. References. Gonsior, M.J., and R.B. Garner. 1971. Investigation of slope failures in the Idaho batholith. Res. Paper INT-97. USDA-FS Intermountain Research Station, Odgen, UT. Harvey, G.W. and T.A. Burton. 1991. Idaho 319 nonpoint source program project summary - Forest road inventory and stabilization report. Unpublished data. Idaho Department of Health and Welfare - Division of Environmental Quality, Boise, Idaho. King, J.G. 1979. Fillslope erosion from forested roads. Paper presented at the 34th Annual Meeting, Pacific Northwest Region, American Society of Agricultural Engineers. Boise, Idaho, 1979. Megahan, W.H., and S.B. Monsen, M.D. Wilson. 1992. Probability of sediment yields from surface erosion of granitic roadfills in Idaho. J. Environmental Quality. 20:53-60. National Marine Fisheries Service (NMFS). 1995. Letter from NMFS: Informal consultation on Hanson Creek, Bear Valley Creek, and Deer Creek grazing allotments, Kline mountain road rehabilitation project, and Houselog II timber sale, Boise National Forest. NMFS, Portland, Oregon. 6p. Letter dated: July 12, 1995. NMFS. 1995. Letter from NMFS: Biological opinion for ongoing actions on the Boise National Forest. NMFS, Portland, Oregon. Letter dated: April 14, 1995. Sankovich, P. 1993. South Fork Salmon River, Chinook salmon redd count results. Personal communication through a Idaho Department of Fish and Game. Seyedbagheri, K.A. and M.L. McHenry, W.S. Platts. 1987. An annotated bibliography of the hydrology and fishery studies of the South Fork Salmon River. Gen. Tech. Report INT-235. Ogden, UT: USDA-Forest Service, Intermountain Research Station. 27p. US Department of Agriculture-Forest Service (USDA-FS). 1996. Kline Mountain Road Stabilization Project, Environmental Assessment and Decision Notice. Boise National Forest, Cascade Ranger District, Cascade, Idaho. USDA-FS. 1995. Upper SFSR and Johnson Creek Watershed Analysis. Boise National Forest, Cascade Ranger District, Cascade, Idaho. Recommendations, pg. VII-46. USDA-FS. 1995. South Fork of the Salmon River Ongoing Activities, Biological Assessment. Boise National Forest, Cascade Ranger District, Cascade, Idaho. USDA-FS. 1990. Boise National Forest Land and Resource Management Plan. Intermountain Region, Boise National Forest, Boise, Idaho. Activity Schedule page A-51. USDA-FS. 1989. South Fork Salmon River Restoration Strategy. Boise and Payette National Forest. Road Improvements, pg. 13,#27. USDI-EPA. 1992. South Fork Salmon River Total Maximum Daily Load. USDI-EPA, Region 10, Seattle, WA. Problem Assessment & TMDL Provisions: #6. # Section 8. Relationships to other projects The Kline Mountain Project is related to other efforts within the South Fork Salmon River that reduce sediment delivery to the river and maintain and improve critical spawning habitat of the Chinook salmon. The entire upper SFSR is managed by the Boise National Forest. In 1989, the SFSR Restoration Strategy identified sediment sources within the watershed (USDA-FS 1989). Fomal TMDL identified similar sites to be treated to restore fish habitat and improve water quality (USDI-EPA 1992). Many of the projects on these lists have been accomplished by the Forest Service (Boise & Payette NF) over the past years. The Upper SFSR and Johnson Creek Watershed Analysis reviewed the completion of projects identified in the Restoration Strategy and the TMDL (USDA-FS 1995). Thirty-two projects have been completed or are ongoing since 1990, in the SFSR. Additional non-interdependent relationships include: the 1993 effort by the USFS to reduce sediment delivery from sites identified in the On-Going Assessment of Forest Service activities (USDA-FS 1995). The effort treated dispersed recreation sites and forest roads that damaged stream banks and degraded habitat. Treatments included: harden trail crossing and camp sites, close campsites, install bridges and culverts, regrade roads surfaces and apply gravel. # Section 9. Key personnel A summary of key personnel required for this project is provided with the information requested. One-page resumes can be made available upon request. Personnel involved with project implementation | USFS
Personnel | Title | Professional Education
Years of Experience | Project
Duties | |-------------------|---------------------------------|---|---| | Jennie Fischer | District Hydrologist | BS Watershed Sciences
Colorado State University
1988
10 years | Cut/Fill slope vegetation & stabilization Wetlands restoration Erosion Control Inspector Monitoring | | Suzanne Gebhards | Hydrologist Trainee | MS Watershed Science
(in-progress)
Utah State University
2 years | Erosion Control Inspector Vegetation Planting Monitoring | | Don Newberry | District Fisheries Biologist | BS Zoology - 1971
Southern Illinois University
MS Biology - 1984
Murray State University
16 years | Erosion Control
Inspector
Monitoring | | Dale Olson | Fisheries Biologist | BA Biology - 1984
Northwest Nazarene College
BS Fisheries - 1992
University of Idaho
5 years | Erosion Control
Inspector
Monitoring | | Tom Hass | District Engineering Technician | Transportation Planning & Construction 30 years | Contracting Officers Representative (COR Contract Planning | | Terry Ford | Engineering Technician | Transportation Planning & Construction 22 year | Contract Planning
Contract Inspector | | Robert Smith | Engineering Technician | Transportation Planning & Construction 16 years | Contract Planning
Contract Inspector | # Section 10. Information/technology transfer A monitoring plan has been developed to evaluate: project implementation, sediment reduction treatments, and vegetation success. A summary will be published in the Boise National Forest Annual Monitoring Report. A full report will be placed in the project file at the Cascade Ranger District office in Cascade, Idaho. There is potential to develop educational signs at the wetland explain the importance of wetlands and the need to reduce erosion from roads.